

Reg.	No.	*	и		н		,				16		*	*	ėt	a	×		Ħ	u		м	10	M

Sixth Semester B.Tech. Degree Examination, March 2015 (2008 Scheme)

Branch: Computer Science & Engg.

08.603: FORMAL LANGUAGES AND AUTOMATA THEORY
(Special Supplementary)

Time: 3 Hours

Answer all questions.

- 1. Define NFA mathematically. Explain its significance and function.
- 2. What are the applications of Regular expressions and Finite automata?
- 3. Construct a DFA for languages which do not contain two consecutive a's but contain two consecutive b's over alphabet {a, b}.
- 4. When is a CFG said to be a linear grammar? Explain with example.
- Define different normal forms of CFG's. Give the applications of each normal forms.
- 6. State 'pumping lemma' for context free languages.
- 7. Differentiate between DPDA and NPDA. Give an example for a language which can be accepted only by NPDA.
- 8. What do you mean by Recursively enumerable language?
- 9. Design a Turing machine to compute for positive integer n : f(n) = n+1
- Define reducibility.

 $(10\times4=40 \text{ Marks})$

10

PART-B

Module -

		Module – I	
11.	a)	Give the regular set or language for the regular expression	40
		i) 1 (01)* (10)* 1	10
	b)	State pumping lemma for regular languages and hence prove	
		$L = \{ w \in \sum^* n_a(w) < n_b(w) \} \text{ is not regular.}$ OR	10
12.	a)	Prove the equivalence of Mealy machine and Moore machine.	12
	b)		8
		Module – II	
13.	a)	Find the grammar that generate following languages.	
		i) $L = \{a^n b^{2n} n > 0\}$ ii) $L = \{0^n 1^m n \ge 0, m > n\}$.	12
	b)	What is ambiguous grammar. Test whether the following grammar is ambiguous. S \to a/Sa/bSS/SSb/SbS.	8
		OR	
14.	a)	Construct a PDA that accepts the language generated by the grammar with productions S \rightarrow aSbb/a.	7
	b)	Convert the following CFG into CNF	
		$S \rightarrow AACD$	
		$A \rightarrow aAb/\epsilon$	
		$C \rightarrow aC/a$	
		$D \rightarrow aDa/bDb/\in$.	13
		Module – III	
15.	a)	Construct a Turing machine to add two unary numbers.	7
	b)	Prove the equivalence of Single tape and Multitape Turing machines.	13
		OR	
16.	a)	Prove that halting problem of Turing machine is undecidable.	10

b) Design a Turing machine which finds 2's complement of a given number.